由实验室进化而来的细菌转向消耗二氧化碳来生长
在几个月的过程中,以色列的研究人员创造了大肠杆菌菌株,该菌株消耗二氧化碳作为能源,而不是有机化合物。合成生物学的这一成就凸显了细菌新陈代谢的惊人可塑性,并可以为未来的碳中和生物生产提供框架。该作品于11月27日发表在《细胞》杂志上。
“我们的主要目标是建立一个方便的科学平台,以增强对二氧化碳的固定,这可以帮助解决与可持续生产食品和燃料以及二氧化碳排放引起的全球变暖有关的挑战,”该系统生物学家Ron Milo说。魏茨曼科学研究所。“将大肠杆菌的碳源(生物技术的主要力量)从有机碳转化为二氧化碳是迈向建立这样一个平台的重要一步。”
现实世界分为自养生物和将有机碳转化为生物质的自养生物和消耗有机化合物的异养生物。自养生物控制着地球上的生物量,并供应我们的许多食物和燃料。更好地理解自养生长的原理和促进自养生长的方法对于实现可持续发展的道路至关重要。
合成生物学的一个巨大挑战是在模型异养生物体内产生合成自养。尽管人们对可再生能源存储和更可持续的食品生产产生了广泛兴趣,但是过去设计工业相关异养模式生物以使用CO2作为唯一碳源的努力一直失败。先前在模型异养生物中建立自催化CO2固定循环的尝试总是要求添加多碳有机化合物以实现稳定的生长。
第一作者Shmuel Gleizer(@GleizerShmuel)说:“从基本的科学角度来看,我们想看看细菌饮食中的这种重大转变-从依赖糖到从二氧化碳中合成所有生物质都是可能的。” ,魏茨曼科学研究所博士后。“除了在实验室测试这种转化的可行性外,我们还想知道细菌DNA蓝图的变化需要多么极端的适应。”
在细胞研究中,研究人员利用新陈代谢的重新布线和实验室进化将大肠杆菌转化为自养生物。工程菌株从甲酸盐中收集能量,甲酸盐可通过可再生资源电化学产生。因为甲酸盐是一种有机一碳化合物,不能用作大肠杆菌的碳源,所以它不支持异养途径。研究人员还对该菌株进行了工程改造,以产生用于碳固定和还原以及从甲酸中收集能量的非天然酶。但是仅凭这些变化不足以支持自养,因为大肠杆菌的代谢适应了异养生长。
为了克服这一挑战,研究人员将适应性实验室进化作为一种代谢优化工具。他们使参与异养生长的中央酶失活,使细菌更依赖自养途径生长。他们还利用有限数量的糖木糖(一种有机碳的来源)在恒化器中生长细胞,以抑制异养途径。最初供应约300天的木糖对支持足够的细胞增殖以启动进化至关重要。该化学恒温器还包含大量的甲酸盐和10%的CO2气氛。
在这种环境下,与依赖木糖作为生长碳源的异养生物相比,自养生物具有很大的选择性优势,这些自养生物由二氧化碳作为唯一碳源生产生物质。研究人员使用同位素标记证实了进化出的分离细菌是真正的自养细菌,即二氧化碳,而不是木糖或任何其他有机化合物支持细胞生长。
“为了使实验室进化的通用方法成功,我们必须找到一种方法,将所需的细胞行为变化与适应性优势相结合,” Milo说。“这很困难,需要大量的思考和精巧的设计。”
通过对进化的自养细胞的基因组和质粒进行测序,研究人员发现在化学恒温器的进化过程中仅获得了11个突变。一组突变影响编码与碳固定循环相关的酶的基因。第二类是在以前的自适应实验室进化实验中通常观察到突变的基因中发现的突变,这表明它们不一定对自养途径具有特异性。第三类是未知基因的突变。
Gleizer说:“这项研究首次描述了细菌生长方式的成功转化。教导肠道细菌做一些以植物闻名的技巧。”“当我们开始定向进化过程时,我们对成功的机会一无所知,而且文献中也没有先例来指导或暗示这种极端转变的可行性。此外,最后看到相对较小进行这种转变所需的基因改变的数量令人惊讶。”